
GPU Coder™
Getting Started Guide

R2023a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

GPU Coder™ Getting Started Guide
© COPYRIGHT 2017–2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
September 2017 Online only New for Version 1.0 (Release 2017b)
March 2018 Online only Revised for Version 1.1 (Release 2018a)
September 2018 Online only Revised for Version 1.2 (Release 2018b)
March 2019 Online only Revised for Version 1.3 (Release 2019a)
September 2019 Online only Revised for Version 1.4 (Release 2019b)
March 2020 Online only Revised for Version 1.5 (Release 2020a)
September 2020 Online only Revised for Version 2.0 (Release 2020b)
March 2021 Online only Revised for Version 2.1 (Release 2021a)
September 2021 Online only Revised for Version 2.2 (Release 2021b)
March 2022 Online only Revised for Version 2.3 (Release 2022a)
September 2022 Online only Revised for Version 2.4 (Release 2022b)
March 2023 Online only Revised for Version 2.5 (Release 2023a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

About GPU Coder
1

GPU Coder Product Description . 1-2

Installing Prerequisite Products . 1-3
MathWorks Products and Support Packages . 1-3
Third-Party Hardware . 1-3
Third-Party Software . 1-4
Tips . 1-5

Setting Up the Prerequisite Products . 1-7
MEX Setup . 1-7
Environment Variables . 1-7
Verify Setup . 1-10

The GPU Environment Check and Setup App . 1-12
Hardware Setup . 1-13
Board Settings . 1-15
Workflow Checks . 1-15
Environment Checks . 1-17
GPU Code Generation Environment Check Report 1-17

Tutorials
2

Code Generation by Using the GPU Coder App . 2-2
Learning Objectives . 2-2
Tutorial Prerequisites . 2-2
Example: The Mandelbrot Set . 2-2
Tutorial Files . 2-3
Run the Original MATLAB Code . 2-4
Prepare MATLAB Code for Code Generation . 2-5
Make the MATLAB Code Suitable for Code Generation 2-6
Generate Code by Using the GPU Coder App . 2-7

Code Generation Using the Command Line Interface 2-15
Learning Objectives . 2-15
Tutorial Prerequisites . 2-15
Example: The Mandelbrot Set . 2-15
Tutorial Files . 2-16
Run the Original MATLAB Code . 2-17
Make the MATLAB Code Suitable for Code Generation 2-18
Code Generation from the Command Line . 2-19

iii

Contents

Verify Correctness of the Generated Code . 2-22

GPU Code Generation: The Mandelbrot Set . 2-23

Debug CUDA MEX Functions . 2-28
Debug CUDA MEX Functions by Using a Debugger 2-28
Debug on Microsoft Windows Platforms . 2-28
Debug on Linux Platforms . 2-29

Verification
3

Verify Correctness of the Generated Code . 3-2
Verify MEX Functions in the GPU Coder App . 3-2
Verify MEX Functions at the Command Line . 3-2
Code Verification Through Software-In-The-Loop 3-3
Numerical Differences Between CPU and GPU . 3-4

About GPU Code Generation
4

GPU Programming Paradigm . 4-2

GPU Code Generation Workflow . 4-3

iv Contents

About GPU Coder

• “GPU Coder Product Description” on page 1-2
• “Installing Prerequisite Products” on page 1-3
• “Setting Up the Prerequisite Products” on page 1-7
• “The GPU Environment Check and Setup App” on page 1-12

1

GPU Coder Product Description
Generate CUDA code for NVIDIA GPUs

GPU Coder™ generates optimized CUDA® code from MATLAB® code and Simulink® models. The
generated code includes CUDA kernels for parallelizable parts of your deep learning, embedded
vision, and signal processing algorithms. For high performance, the generated code calls optimized
NVIDIA® CUDA libraries, including TensorRT, cuDNN, cuFFT, cuSolver, and cuBLAS. The code can be
integrated into your project as source code, static libraries, or dynamic libraries, and it can be
compiled for desktops, servers, and GPUs embedded on NVIDIA Jetson™, NVIDIA DRIVE®, and other
platforms. You can use the generated CUDA within MATLAB to accelerate deep learning networks
and other computationally intensive portions of your algorithm. GPU Coder lets you incorporate
handwritten CUDA code into your algorithms and into the generated code.

When used with Embedded Coder®, GPU Coder lets you verify the numerical behavior of the
generated code via software-in-the-loop (SIL) and processor-in-the-loop (PIL) testing.

1 About GPU Coder

1-2

Installing Prerequisite Products
To use GPU Coder for CUDA code generation, you must install and setup the following products. For
setup instructions , see “Setting Up the Prerequisite Products” on page 1-7.

MathWorks Products and Support Packages
• MATLAB (required).
• MATLAB Coder™ (required).
• Parallel Computing Toolbox™ (required).
• Simulink (required for generating code from Simulink models).
• Computer Vision Toolbox™ (recommended).
• Deep Learning Toolbox™ (required for deep learning).
• Embedded Coder (recommended).
• Image Processing Toolbox™ (recommended).
• Simulink Coder (required for generating code from Simulink models).
• GPU Coder Interface for Deep Learning support package (required for deep learning).
• MATLAB Coder Support Package for NVIDIA Jetson and NVIDIA DRIVE Platforms (required for

deployment to embedded targets such as NVIDIA Jetson and Drive).

For instructions on installing MathWorks® products, see the MATLAB installation documentation for
your platform. If you have installed MATLAB and want to check which other MathWorks products are
installed, enter ver in the MATLAB Command Window. To install the support packages, use Add-On
Explorer in MATLAB.

If MATLAB is installed on a path that contains non 7-bit ASCII characters, such as Japanese
characters, GPU Coder does not work because it cannot locate code generation library functions.

Third-Party Hardware
• NVIDIA GPU enabled for CUDA with a compatible graphics driver. For more information, see

CUDA GPUs (NVIDIA).

To see the CUDA compute capability requirements for code generation, consult the following
table.

Target Compute Capability
CUDA MEX See “GPU Computing Requirements”.
Source code, static or dynamic library, and
executables

3.2 or higher.

Deep learning applications in 8-bit integer
precision

6.1, 7.0 or higher.

Deep learning applications in half-precision
(16-bit floating point)

5.3, 6.0, 6.2 or higher.

• ARM® Mali graphics processor.

For the Mali device, GPU Coder supports code generation for only deep learning networks.

 Installing Prerequisite Products

1-3

https://developer.nvidia.com/cuda-gpus

Third-Party Software
Required

C/C++ Compiler:

Linux® Windows®

GCC C/C++ compiler. For supported versions,
see Supported and Compatible Compilers.

Microsoft® Visual Studio® 2017
Microsoft Visual Studio 2019
Microsoft Visual Studio 2022

Optional

For CUDA MEX, the code generator uses the NVIDIA compiler and libraries installed with MATLAB.
Standalone code (static library, dynamically linked library, or executable program) generation has
additional software requirements.

Software Name Information
CUDA Toolkit GPU Coder has been tested with CUDA Toolkit

v9.x-v11.8.

To download the CUDA Toolkit, see CUDA Toolkit
Archive (NVIDIA).

NVIDIA Nsight systems Generate an execution profiling report for the
generated CUDA code. The report provides
metrics that help you analyze your application
algorithms and identify opportunities to optimize
performance.

GPU Coder has been tested with Nsight 2022.5.1

Note The profiling tools from NVIDIA might not
support legacy GPU hardware such as the Kepler
family of devices. For information on supported
GPU devices, see the NVIDIA documentation.

NVIDIA CUDA deep neural network library
(cuDNN) for NVIDIA GPUs

For the host GPU device, GPU Coder has been
tested with cuDNN v8.7.

To download cuDNN, see cuDNN (NVIDIA).
NVIDIA TensorRT high performance inference
optimizer and runtime library

For the host GPU device, GPU Coder has been
tested with TensorRT v8.5.1.7.

To download TensorRT, see TensorRT (NVIDIA).
ARM Compute Library for Mali GPUs GPU Coder has been tested with v19.05.

For more information, see Compute Library
(ARM).

1 About GPU Coder

1-4

https://www.mathworks.com/support/requirements/supported-compilers.html
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/tensorrt
https://developer.arm.com/ip-products/processors/machine-learning/compute-library
https://developer.arm.com/ip-products/processors/machine-learning/compute-library

Software Name Information
Open Source Computer Vision Library (OpenCV) Required for deep learning examples.

For examples targeting NVIDIA GPUs on the host
development computer, use OpenCV v3.1.0.

For examples targeting ARM GPUs, use OpenCV
v2.4.9 on the ARM target hardware.

For more information, see OpenCV.

Tips
General

• On Windows, a space or special character in the path to the tools, compilers, and libraries can
create issues during the build process. You must install third-party software in locations that does
not contain spaces or change Windows settings to enable creation of short names for files, folders,
and paths. For more information, see Using Windows short names solution in MATLAB Answers.

• You must download the OpenCV source and build the libraries. The examples require separate libs
such as, opencv_core.lib and opencv_video.lib. For more information, refer to the OpenCV
documentation.

CUDA Toolkit

• The NVIDIA nvcc compiler relies on tight integration with the host development environment,
including the host compiler and runtime libraries. It is recommended that you follow the CUDA
Toolkit documentation for detailed information on compiler, libraries, and other platform specific
requirements. See, CUDA Toolkit Documentation (NVIDIA).

• It is recommended to select the default installation options that includes nvcc compiler, cuFFT,
cuBLAS, cuSOLVER, Thrust libraries, and other tools.

• The nvcc compiler supports multiple versions of GCC and therefore you can generate CUDA code
with other versions of GCC. However, there may be compatibility issues when executing the
generated code from MATLAB as the C/C++ run-time libraries that are included with the MATLAB
installation are compiled for only the supported version of GCC.

• The “GPU Performance Analyzer” workflow depends on profiling tools from NVIDIA. From CUDA
Toolkit v10.1 onwards, NVIDIA restricts access to performance counters to only admin users. To
enable GPU performance counters to be used by all users, see the instructions provided in
Permission issue with Performance Counters (NVIDIA).

• GPU Coder does not support generating CUDA code by using CUDA Toolkit version 8.

Deep Learning

• Other versions of these deep learning libraries may have compatibility issues with all the features
GPU Coder supports this release.

NVIDIA Embedded Targets

 Installing Prerequisite Products

1-5

https://opencv.org/
https://www.mathworks.com/matlabcentral/answers/95399-why-is-the-build-process-failing-with-error-code-nmake-fatal-error-u1073-don-t-know-how-to-make
https://docs.nvidia.com/cuda/archive/10.1/
https://developer.nvidia.com/nvidia-development-tools-solutions-err_nvgpuctrperm-permission-issue-performance-counters

• On the target platforms, use the JetPack or the DriveInstall software appropriate for your board to
install all the libraries. For more information, see “Install and Setup Prerequisites for NVIDIA
Boards” (MATLAB Coder Support Package for NVIDIA Jetson and NVIDIA DRIVE Platforms).

ARM Mali

• This library must be installed on the ARM target hardware. Do not use a prebuilt library because
it might be incompatible with the compiler on the ARM hardware. Instead, build the library from
the source code. Build the library on either your host machine or directly on the target hardware.
See instructions for building the library on GitHub®. You can also find information on building the
library for CPUs in this post on MATLAB answers.

• When building the Compute Library, enable OpenCL support in the build options. See the ARM
Compute Library documentation for instructions. OpenCL library (v1.2 or higher) on the ARM
target hardware. See the ARM Compute Library documentation for version requirements. After
the build is complete, rename the build folder containing the libraries as lib. Additionally, copy
the OpenCL libraries present in the build/opencl-1.2-stubs folder into the lib folder. These
steps are required so that the generated makefile can locate the libraries when building the
generated code on the target hardware.

See Also
Apps
GPU Coder | GPU Environment Check

Functions
codegen | coder.checkGpuInstall

Objects
coder.gpuEnvConfig

More About
• “Setting Up the Prerequisite Products” on page 1-7
• “The GPU Environment Check and Setup App” on page 1-12
• “Code Generation by Using the GPU Coder App” on page 2-2
• “Code Generation Using the Command Line Interface” on page 2-15
• “Code Generation for Deep Learning Networks by Using cuDNN”
• “Code Generation for Deep Learning Networks by Using TensorRT”
• “Code Generation for Deep Learning Networks Targeting ARM Mali GPUs”

1 About GPU Coder

1-6

https://arm-software.github.io/ComputeLibrary/v19.02/index.xhtml#S3_how_to_build
https://www.mathworks.com/matlabcentral/answers/455590-matlab-coder-how-do-i-build-the-arm-compute-library-for-deep-learning-c-code-generation-and-deplo
https://arm-software.github.io/ComputeLibrary/v19.02/

Setting Up the Prerequisite Products
In this section...
“MEX Setup” on page 1-7
“Environment Variables” on page 1-7
“Verify Setup” on page 1-10

To use GPU Coder for CUDA code generation, install the products specified in “Installing Prerequisite
Products” on page 1-3.

MEX Setup
When generating CUDA MEX with GPU Coder, the code generator uses the NVIDIA compiler and
libraries included with MATLAB. Depending on the operating system on your development computer,
you only need to set up the MEX code generator.

Note GPU Coder does not support standalone deployment of the generated CUDA MEX-file using
MATLAB Runtime.

Windows Systems

If you have multiple versions of Microsoft Visual Studio compilers for the C/C++ language installed
on your Windows system, MATLAB selects one as the default compiler. If the selected compiler is not
compatible with the version supported by GPU Coder, change the selection. For supported Microsoft
Visual Studio versions, see “Installing Prerequisite Products” on page 1-3.

To change the default compiler, use the mex -setup C++ command. When you call mex -setup C+
+, MATLAB displays a message with links to set up a different compiler. Select a link and change the
default compiler for building MEX files. The compiler that you choose remains the default until you
call mex -setup C++ to select a different default. For more information, see “Change Default
Compiler”. The mex -setup C++ command changes only the C++ language compiler. You must also
change the default compiler for C by using mex -setup C.

Linux Platform

MATLAB and the CUDA Toolkit support only the GCC/G++ compiler for the C/C++ language on Linux
platforms. For supported GCC/G++ versions, see “Installing Prerequisite Products” on page 1-3.

Environment Variables

Standalone code (static library, dynamically linked library, or executable program) generation has
additional set up requirements. GPU Coder uses environment variables to locate the necessary tools,
compilers, and libraries required for code generation.

Note On Windows, a space or special character in the path to the tools, compilers, and libraries can
create issues during the build process. You must install third-party software in locations that does not
contain spaces or change Windows settings to enable creation of short names for files, folders, and
paths. For more information, see Using Windows short names solution in MATLAB Answers.

 Setting Up the Prerequisite Products

1-7

https://www.mathworks.com/matlabcentral/answers/95399-why-is-the-build-process-failing-with-error-code-nmake-fatal-error-u1073-don-t-know-how-to-make

Platform Variable Name Description
Windows CUDA_PATH Path to the CUDA Toolkit installation.

For example:

C:\Program Files\NVIDIA GPU Computing
Toolkit\CUDA\v11.8\

NVIDIA_CUDNN Path to the root folder of cuDNN installation. The root
folder contains the bin, include, and lib subfolders.

For example:

C:\Program Files\NVIDIA GPU Computing
Toolkit\CUDA\v11.8\

NVIDIA_TENSORRT Path to the root folder of TensorRT installation. The root
folder contains the bin, data, include, and lib subfolders.

For example:

C:\Program Files\NVIDIA GPU Computing
Toolkit\CUDA\v11.8\TensorRT\

OPENCV_DIR Path to the build folder of OpenCV on the host. This
variable is required for building and running deep
learning examples.

For example:

C:\Program Files\opencv\build
PATH Path to the CUDA executables. Generally, the CUDA

Toolkit installer sets this value automatically.

For example:

C:\Program Files\NVIDIA GPU Computing
Toolkit\CUDA\v11.8\bin
Path to the cudnn.dll dynamic library. The name of
this library may be different on your installation.

For example:

C:\Program Files\NVIDIA GPU Computing
Toolkit\CUDA\v11.8\bin
Path to the nvinfer* dynamic libraries of TensorRT.
The name of this library may be different on your
installation.

For example:

C:\Program Files\NVIDIA GPU Computing
Toolkit\CUDA\v11.8\TensorRT\lib

1 About GPU Coder

1-8

Platform Variable Name Description
Path to the nsys executable of NVIDIA Nsight systems.

For example:

C:\Program Files\NVIDIA Corporation\Nsight
Systems 2022.5.1\target-windows-x64
Path to the Dynamic-link libraries (DLL) of OpenCV. This
variable is required for running deep learning examples.

For example:

C:\Program Files\opencv\build\x64\vc15\bin
Linux PATH Path to the CUDA Toolkit executable.

For example:

/usr/local/cuda-11.8/bin
Path to the nsys executable of NVIDIA Nsight systems.

For example:

/usr/local/Nsight Systems 2022.5.1/target-
linux-x64
Path to the OpenCV libraries. This variable is required
for building and running deep learning examples.

For example:

/usr/local/lib/
Path to the OpenCV header files. This variable is
required for building deep learning examples.

For example:

/usr/local/include/opencv
LD_LIBRARY_PATH Path to the CUDA library folder.

For example:

/usr/local/cuda-11.8/lib64
Path to the cuDNN library folder.

For example:

/usr/local/cuda-11.8/lib64/
Path to the TensorRT library folder.

For example:

/usr/local/cuda-11.8/TensorRT/lib/

 Setting Up the Prerequisite Products

1-9

Platform Variable Name Description
Path to the ARM Compute Library folder on the target
hardware.

For example:

/usr/local/arm_compute/lib/

Set LD_LIBRARY_PATH on the ARM target hardware.
NVIDIA_CUDNN Path to the root folder of cuDNN library installation.

For example:

/usr/local/cuda-11.8/
NVIDIA_TENSORRT Path to the root folder of TensorRT library installation.

For example:

/usr/local/cuda-11.8/TensorRT/
ARM_COMPUTELIB Path to the root folder of the ARM Compute Library

installation on the ARM target hardware. Set this value
on the ARM target hardware.

For example:

/usr/local/arm_compute

Verify Setup
To verify that your development computer has all the tools and configuration needed for GPU code
generation, use the coder.checkGpuInstall function. This function performs checks to verify if
your environment has the all third-party tools and libraries required for GPU code generation. You
must pass a coder.gpuEnvConfig object to the function. This function verifies the GPU code
generation environment based on the properties specified in the given configuration object.

You can also use the equivalent GUI-based application that performs the same checks and can be
launched using the command, Check GPU Install.

In the MATLAB Command Window, enter:

gpuEnvObj = coder.gpuEnvConfig;
gpuEnvObj.BasicCodegen = 1;
gpuEnvObj.BasicCodeexec = 1;
gpuEnvObj.DeepLibTarget = 'tensorrt';
gpuEnvObj.DeepCodeexec = 1;
gpuEnvObj.DeepCodegen = 1;
results = coder.checkGpuInstall(gpuEnvObj)

The output shown here is representative. Your results might differ.

Compatible GPU : PASSED
CUDA Environment : PASSED
 Runtime : PASSED

1 About GPU Coder

1-10

 cuFFT : PASSED
 cuSOLVER : PASSED
 cuBLAS : PASSED
cuDNN Environment : PASSED
TensorRT Environment : PASSED
Basic Code Generation : PASSED
Basic Code Execution : PASSED
Deep Learning (TensorRT) Code Generation: PASSED
Deep Learning (TensorRT) Code Execution: PASSED

results =

 struct with fields:

 gpu: 1
 cuda: 1
 cudnn: 1
 tensorrt: 1
 basiccodegen: 1
 basiccodeexec: 1
 deepcodegen: 1
 deepcodeexec: 1
 tensorrtdatatype: 1
 profiling: 0

See Also
Apps
GPU Coder | GPU Environment Check

Functions
codegen | coder.checkGpuInstall

Objects
coder.gpuEnvConfig

More About
• “Installing Prerequisite Products” on page 1-3
• “The GPU Environment Check and Setup App” on page 1-12
• “Code Generation by Using the GPU Coder App” on page 2-2
• “Code Generation Using the Command Line Interface” on page 2-15
• “Code Generation for Deep Learning Networks by Using cuDNN”
• “Code Generation for Deep Learning Networks by Using TensorRT”

 Setting Up the Prerequisite Products

1-11

The GPU Environment Check and Setup App
The GPU Environment Check app is an interactive tool to verify and set up the GPU code
generation environment on your development computer and embedded hardware platforms such as
the NVIDIA DRIVE and Jetson.

Before using this app, install and set up the required prerequisite third-party compilers, libraries, and
tools. For more information, see “Installing Prerequisite Products” on page 1-3 and “Setting Up the
Prerequisite Products” on page 1-7.

To start the app, in the MATLAB Command Window, enter:

gpucoderSetup

Using the GPU Environment Check app, you can:

• Verify the host development computer environment for the NVIDIA compilers and libraries
necessary for GPU code generation.

• Perform basic code generation and test the execution of the generated code on the GPU device in
the host computer. The tests validate code execution by comparing the results with MATLAB
simulation.

• Perform deep learning code generation and execution tests on the development computer. You can
target the NVIDIA cuDNN or TensorRT libraries. Requires the GPU Coder Interface for Deep
Learning support package.

• Connect to embedded NVIDIA boards such as DRIVE and Jetson to perform code generation and
execution tests. Requires the MATLAB Coder Support Package for NVIDIA Jetson and NVIDIA
DRIVE Platforms.

• Specify the location of the libraries and generate a MATLAB script that sets up the environment
variables required by GPU Coder.

Note The gpucoderSetup app generates a report file in the current folder. If you do not have write
permissions in the current folder, before running the app, change the folder by using the MATLAB cd
command.

1 About GPU Coder

1-12

Hardware Setup
The Check/Setup panel of the app provides drop-down lists that enable you to select a GPU device
on the host development computer or hardware platforms such as the NVIDIA DRIVE and Jetson.

 The GPU Environment Check and Setup App

1-13

Option Values Description
Select Hardware Host (for MEX) Perform code generation, code

execution, and environment
checks on the host development
computer. The app generates
CUDA MEX to perform tests.

If your development computer
has multiple GPU devices, use
the Select GPU option to select
an appropriate GPU device.

Drive Perform code generation and
code execution checks on an
NVIDIA DRIVE target platform.

After installing the MATLAB
Coder Support Package for
NVIDIA Jetson and NVIDIA
DRIVE Platforms, use the Board
Settings panel to specify
connection parameters for the
target.

Jetson Perform code generation and
code execution checks on an
NVIDIA Jetson target platform.

After installing the MATLAB
Coder Support Package for
NVIDIA Jetson and NVIDIA
DRIVE Platforms, use the Board
Settings panel to specify
connection parameters for the
target.

Select GPU GPU<idx>-<device name> Select the GPU device to run
tests. When there are multiple
devices, the first device is the
default.

This option is visible only when
the Select Hardware option is
set to Host (for MEX). For
DRIVE or Jetson hardware, use
the GPU Device ID option
available in the Board Settings
panel to select a specific GPU
device.

1 About GPU Coder

1-14

Board Settings
Specify the connection parameters for hardware platforms such as the NVIDIA DRIVE and Jetson.
The app uses the jetson or drive functions of the MATLAB Coder Support Package for NVIDIA
Jetson and NVIDIA DRIVE Platforms to create a live hardware connection object. The support
package software uses an SSH connection over TCP/IP to execute commands while building and
running the generated CUDA code on the DRIVE or Jetson platforms. The target platform must be on
the same network as the host computer. Alternatively, you can use an Ethernet crossover cable to
connect the board directly to the host computer. For more information on requirements, setup, and
configuration steps for your NVIDIA boards, see “Install and Setup Prerequisites for NVIDIA Boards”
(MATLAB Coder Support Package for NVIDIA Jetson and NVIDIA DRIVE Platforms).

Option Description
Device Address IP address or host name of the hardware.

For example, 169.254.0.2 or gpucoder-
tegratx2-name

To use the host name, you must connect an
Ethernet cable to the Ethernet port of the board.
Then, use Linux commands to configure the
hardware IP address and associate the host name
with the IP address.

Username Valid Linux user name for the operating system
on the board.

Password Valid password for the Linux user name specified.
Execution Timeout Specify the time in seconds that the app waits for

before validating the execution tests on the
target. The default value is 10 seconds.

GPU Device ID In a multi GPU environment such as NVIDIA
Drive platforms, specify the CUDA GPU device to
target.

Workflow Checks
There are two types of workflow checks that you can perform by using the app:

Basic code generation and execution tests on the development computer. These tests validate code
execution by comparing the results with MATLAB simulation. Basic code generation and execution
tests use the following entry-point function:

function [yout] = gpuSimpleTest(xin)

coder.allowpcode('plain');
yout = coder.nullcopy(zeros(size(xin)));
coder.gpu.kernelfun();

for idx=1:100
 yout(idx) = xin(idx) * 2;
end

 The GPU Environment Check and Setup App

1-15

yout = yout + 5;

end

Option Description
Generate Code Test basic code generation and building. This test

requires a valid CUDA code generation
environment on the specified hardware.

Generate Code and Execute Test basic code generation, building, and
execution on the device in Specified Hardware.
This test requires a valid CUDA code generation
environment and GPU device on the specified
hardware.

SIL Profiling Perform basic SIL profiling tests on the host
computer.

Deep learning code generation and execution tests on the development computer. You can target the
cuDNN or TensorRT libraries. Deep learning code generation and execution tests use a pretrained
network that can detect handwritten digit images. The network has been trained by using the
Modified National Institute of Standards and Technology database (MNIST) data set. The following
code shows the entry-point function for the deep learning code generation tests.

function out = dlEntryPointTest(in, ntwkfile)

 net = coder.loadDeepLearningNetwork(ntwkfile);
 out = net.predict(in);

end

Option Description
Generate Code Test deep learning code generation and building.

This test requires a valid CUDA code generation
environment on the specified hardware.

Generate Code and Execute Test deep learning code generation, building, and
execution on the device in Specified Hardware.
This test requires a valid CUDA code generation
environment and GPU device on the specified
hardware.

Target Specify the deep learning library to generate
code for. Valid options are cuDNN or TensorRT.

Data Type Check Specify the precision of the inference
computations in supported layers. To perform
inference in 32-bit floats, use 'FP32'. For half-
precision, use 'FP16'. For 8-bit integer, use
'INT8'. Default value is 'FP32'.

For compute capability requirements, see “Third-
Party Hardware” on page 1-3.

1 About GPU Coder

1-16

Environment Checks
Specify the location of the libraries for checking the CUDA development environment on your host
computer. Generate a MATLAB script gpuEnvSettings.m that sets up the environment variables
required by GPU Coder. For more information, see “Setting Up the Prerequisite Products” on page 1-
7.

Option Description
CUDA Installation Path Path to the CUDA Toolkit installation.

For example:

/usr/local/cuda-10.1/bin
cuDNN Path to the root folder of cuDNN library

installation.

For example:

/usr/local/cuDNN/
TensorRT Path to the root folder of TensorRT library

installation.

For example:

/usr/local/TensorRT/
NVTX Library Path Path to the nvtx libraries required for profiling.

To enable this item, select SIL Profiling.

On a standard CUDA Toolkit installation, this path
is usually the CUDA library folder.

For example:

/usr/local/cuda-10.1/lib64

GPU Code Generation Environment Check Report
When you select Run Checks, the gpucoderSetup app performs environment, code generation, and
other checks based on the settings that you have selected. It then generates gpucoderSetupReport
report that indicates if a test has passed and provides additional information for tests that have
failed. A HTML version of the report of the same name is created in the current folder.

 The GPU Environment Check and Setup App

1-17

1 About GPU Coder

1-18

See Also
Apps
GPU Coder | GPU Environment Check

Functions
codegen | coder.checkGpuInstall

Objects
coder.gpuEnvConfig

More About
• “Installing Prerequisite Products” on page 1-3
• “Setting Up the Prerequisite Products” on page 1-7
• “Code Generation by Using the GPU Coder App” on page 2-2
• “Code Generation Using the Command Line Interface” on page 2-15
• “Code Generation for Deep Learning Networks by Using cuDNN”
• “Code Generation for Deep Learning Networks by Using TensorRT”

 The GPU Environment Check and Setup App

1-19

Tutorials

• “Code Generation by Using the GPU Coder App” on page 2-2
• “Code Generation Using the Command Line Interface” on page 2-15
• “GPU Code Generation: The Mandelbrot Set” on page 2-23
• “Debug CUDA MEX Functions” on page 2-28

2

Code Generation by Using the GPU Coder App
The easiest way to create CUDA kernels is to place the coder.gpu.kernelfun pragma into your
primary MATLAB function. The primary function is also known as the top-level or entry-point
function. When GPU Coder encounters the kernelfun pragma, it attempts to parallelize all the
computation within this function and then maps it to the GPU. For more information about GPU
kernels, see “GPU Programming Paradigm” on page 4-2.

Learning Objectives
In this tutorial, you learn how to:

• Prepare your MATLAB code for CUDA code generation by using the kernelfun pragma.
• Create and set up a GPU Coder project.
• Define function input properties.
• Check for code generation readiness and run-time issues.
• Specify code generation properties.
• Generate CUDA code by using the GPU Coder app.

Tutorial Prerequisites
This tutorial requires the following products:

• MATLAB
• MATLAB Coder
• GPU Coder
• C++ compiler
• NVIDIA GPU enabled for CUDA
• CUDA Toolkit and driver
• Environment variables for the compilers and libraries. For more information, see “Environment

Variables” on page 1-7.

Example: The Mandelbrot Set
Description

The Mandelbrot set is the region in the complex plane consisting of the values z0 for which the
trajectories defined by this equation remain bounded at k→∞.

zk + 1 = zk
2 + z0, k = 0, 1, …

The overall geometry of the Mandelbrot set is shown in the figure. This view does not have the
resolution to show the richly detailed structure of the fringe just outside the boundary of the set. At
increasing magnifications, the Mandelbrot set exhibits an elaborate boundary that reveals
progressively finer recursive detail.

2 Tutorials

2-2

Algorithm

For this tutorial, pick a set of limits that specify a highly zoomed part of the Mandelbrot set in the
valley between the main cardioid and the p/q bulb to its left. A 1000-by-1000 grid of real parts (x) and
imaginary parts (y) is created between these two limits. The Mandelbrot algorithm is then iterated at
each grid location. An iteration number of 500 renders the image in full resolution.

maxIterations = 500;
gridSize = 1000;
xlim = [-0.748766713922161,-0.748766707771757];
ylim = [0.123640844894862,0.123640851045266];

This tutorial uses an implementation of the Mandelbrot set by using standard MATLAB commands
running on the CPU. This calculation is vectorized such that every location is updated simultaneously.

Tutorial Files
Create a MATLAB function called mandelbrot_count.m with the following lines of code. This code
is a baseline vectorized MATLAB implementation of the Mandelbrot set. For every point
(xGrid,yGrid) in the grid, it calculates the iteration index count at which the trajectory defined by
the equation reaches a distance of 2 from the origin. It then returns the natural logarithm of count,
which is used generate the color coded plot of the Mandelbrot set. Later in this tutorial, you modify
this file to make it suitable for code generation.

function count = mandelbrot_count(maxIterations,xGrid,yGrid)
% mandelbrot computation

z0 = xGrid + 1i*yGrid;
count = ones(size(z0));

z = z0;
for n = 0:maxIterations
 z = z.*z + z0;
 inside = abs(z)<=2;
 count = count + inside;
end
count = log(count);

Create a MATLAB script called mandelbrot_test.m with the following lines of code. The script
generates a 1000-by-1000 grid of real parts (x) and imaginary parts (y) between the limits specified

 Code Generation by Using the GPU Coder App

2-3

by xlim and ylim. It also calls the mandelbrot_count function and plots the resulting Mandelbrot
set.

maxIterations = 500;
gridSize = 1000;
xlim = [-0.748766713922161,-0.748766707771757];
ylim = [0.123640844894862,0.123640851045266];

x = linspace(xlim(1),xlim(2),gridSize);
y = linspace(ylim(1),ylim(2),gridSize);
[xGrid,yGrid] = meshgrid(x,y);

%% Mandelbrot computation in MATLAB
count = mandelbrot_count(maxIterations,xGrid,yGrid);

% Show
figure(1)
imagesc(x,y,count);
colormap([jet();flipud(jet());0 0 0]);
axis off
title('Mandelbrot set with MATLAB');

Run the Original MATLAB Code
Run the Mandelbrot Example

Before making the MATLAB version of the Mandelbrot set algorithm suitable for code generation, you
can test the functionality of the original code.

1 Change the current MATLAB working folder to the location that contains mandelbrot_count.m
and mandelbrot_test.m. GPU Coder places generated code in this folder. Change your current
working folder if you do not have full access to this folder.

2 Run the mandelbrot_test script.

The test script runs and shows the geometry of the Mandelbrot within the boundary set by the
variables xlim and ylim.

2 Tutorials

2-4

Prepare MATLAB Code for Code Generation
Before you generate code with GPU Coder, check for coding issues in the original MATLAB code.

Check for Issues at Design Time

There are two tools that help you detect code generation issues at design time:

• Code Analyzer tool
• Code generation readiness tool

The Code Analyzer is a tool incorporated into the MATLAB Editor that continuously checks your code
as you enter it. The Code Analyzer reports issues and recommends modifications to maximize
performance and maintainability of your code. To identify the warnings and errors specific to code
generation from your MATLAB code, add the %#codegen directive to your MATLAB file. For more
information, see Code Analyzer preferences.

Note The Code Analyzer does not detect all code generation issues. After eliminating the errors or
warnings that the Code Analyzer detects, compile your code with GPU Coder to determine if the code
has other compliance issues.

The code generation readiness tool screens the MATLAB code for features and functions that are not
supported for code generation. This tool provides a report that lists issues and recommendations for

 Code Generation by Using the GPU Coder App

2-5

making the MATLAB code suitable for code generation. You can access the code generation readiness
tool in these ways:

• In the current folder browser — right-click the MATLAB file that contains the entry-point function.
• At the command line — by using the coder.screener function with the -gpu flag.
• In the GPU Coder app — after specifying the entry-point files, the app runs the Code Analyzer and

the code generation readiness tool.

Check for Issues at Code Generation Time

You can use GPU Coder to check for issues at code generation time. When GPU Coder detects errors
or warnings, it generates an error report that describes the issues and provides links to the
problematic MATLAB code. For more information, see “Code Generation Reports”.

Make the MATLAB Code Suitable for Code Generation
To begin the process of making your MATLAB code suitable for code generation, use the file
mandelbrot_count.m.

1 Set your MATLAB current folder to the work folder that contains your files for this tutorial.
2 In the MATLAB Editor, open mandelbrot_count.m. The Code Analyzer message indicator at the

top right corner of the MATLAB Editor is green. The analyzer did not detect errors, warnings, or
opportunities for improvement in the code.

3 After the function declaration, add the %#codegen directive to turn on the error checking that is
specific to code generation.
function count = mandelbrot_count(maxIterations,xGrid,yGrid) %#codegen

The Code Analyzer message indicator remains green, indicating that it has not detected any code
generation issues.

4 To map the mandelbrot_count function to a CUDA kernel, modify the original MATLAB code by
placing the coder.gpu.kernelfun pragma in the body of the function.
function count = mandelbrot_count(maxIterations,xGrid,yGrid) %#codegen
% Add kernelfun pragma to trigger kernel creation
coder.gpu.kernelfun;

% mandelbrot computation
z0 = xGrid + 1i*yGrid;
count = ones(size(z0));

z = z0;
for n = 0:maxIterations
 z = z.*z + z0;
 inside = abs(z)<=2;
 count = count + inside;
end
count = log(count);

If you use the coder.gpu.kernelfun pragma, GPU Coder attempts to map the computations in
the function mandelbrot_count to the GPU.

5 Save the file. You are now ready to compile your code by using the GPU Coder app.

2 Tutorials

2-6

Generate Code by Using the GPU Coder App
Open the GPU Coder App

On the MATLAB toolstrip Apps tab, under Code Generation, click the GPU Coder app icon. You can
also open the app by typing gpucoder in the MATLAB Command Window. The app opens the Select
source files page.

Select Source Files

1 On the Select source files page, enter or select the name of the primary function,
mandelbrot_count. The primary function is also known as the top-level or entry-point function.
The app creates a project with the default name mandelbrot_count.prj in the current folder.

2 Click Next and go to the Define Input Types step. The app analyzes the function for coding
issues and code generation readiness. If the app identifies issues, it opens the Review Code
Generation Readiness page where you can review and fix issues. In this example, because the
app does not detect issues, it opens the Define Input Types page.

Define Input Types

The code generator must determine the data types of all the variables in the MATLAB files at compile
time. Therefore, you must specify the data types of all the input variables. You can specify the input
data types in one of these two ways:

• Provide a test file that calls the project entry-point functions. The GPU Coder app can infer the
input argument types by running the test file.

• Enter the input types directly.

For more information about input specifications, see “Input Specification”.

 Code Generation by Using the GPU Coder App

2-7

In this example, to define the properties of the inputs maxIterations, xGrid, and yGrid, specify
the test file mandelbrot_test.m:

1 Enter or select the test file mandelbrot_test.m.
2 Click Autodefine Input Types.

The test file mandelbrot_test.m calls the entry-point function, mandelbrot_count.m with
the expected input types. The app infers that the input maxIterations is double(1x1) and the
inputs xGrid and yGrid are double(1000x1000).

3 Click Next go to the Check for Run-Time Issues step.

Check for Run-Time Issues

The Check for Run-Time Issues step generates a MEX file from your entry-point functions, runs the
MEX function, and reports issues. This step is optional. However, it is a best practice to perform this
step. Using this step, you can detect and fix defects that are harder to diagnose in the generated GPU
code.

GPU Coder provides the option to perform GPU-specific checks at this point. When you select this
option, GPU Coder generates CUDA code and a MEX file from your entry-point functions, runs the
MEX function, and reports issues. Some of the GPU-specific run-time checks include:

• Checks for register spills.
• Stack size conformance checks.

Note There may be certain MATLAB constructs in your code that cause the Check for Run-Time
Issues to fail CPU-specific checks but pass the GPU-specific checks.

2 Tutorials

2-8

1 To open the Check for Run-Time Issues dialog box, click the Check for Issues arrow.
2 In the Check for Run-Time Issues dialog box, specify a test file or enter code that calls the

entry-point function with example inputs. For this example, use the test file
mandelbrot_test.m that you used to define the input types.

3 To enable GPU-specific checks, select the GPU option button. Click Check for Issues.

The app generates a MEX function. It runs the test script mandelbrot_test replacing calls to
mandelbrot_count with calls to the generated MEX. If the app detects issues during the MEX
function generation or execution, it provides warning and error messages. You can click these
messages to navigate to the problematic code and fix the issue. In this example, the app does not
detect issues. The MEX function has the same functionality as the original mandelbrot_count
function.

Note There may be certain MATLAB constructs in your code that cause the Check for Run-
Time Issues to fail CPU-specific checks but pass the GPU-specific checks.

4 Click Next go to the Generate Code step.

Generate CUDA Code

1 To open the Generate dialog box, click the Generate arrow.

 Code Generation by Using the GPU Coder App

2-9

2 In the Generate dialog box, you can select the type of build that you want GPU Coder to
perform. The available options are listed in this table.

Build Type Description
Source code CUDA source code to integrate with an

external project.
MEX Compiled code to run inside MATLAB.
Static Library Binary library for static linking with an

external project.
Dynamic Library Binary library for dynamic linking with an

external project.
Executable Standalone program (requires a custom

CUDA main file).

For this tutorial, set Build type to MEX(.mex). By generating a MEX output, you can check the
correctness of the generated CUDA code from within MATLAB. The MEX build type does not
require additional settings like Toolchain and Hardware Board. It also does not provide the
option to generate only the source code. GPU Coder can automatically select an available CUDA
toolchain as long as the “Environment Variables” on page 1-7 are set properly.

To view advanced options, select More Settings - > GPU Code. To the Compiler Flags option,
add --fmad=false. This flag, when passed to the nvcc, instructs the compiler to disable
Floating-point Multiply-add (FMAD) optimization. This option is set to prevent numerical
mismatch in the generated code because of architectural differences between the CPU and the
GPU. For more information, see “Numerical Differences Between CPU and GPU” on page 3-4.

2 Tutorials

2-10

3 Click Generate.

GPU Coder generates the MEX executable mandelbrot_count_mex in your working folder. The
<pwd>\codegen\mex\mandelbrot_count folder contains all other the generated files
including the CUDA source (*.cu) and header files. The GPU Coder app indicates that the code
generation succeeded. It displays the source MATLAB files and generated output files on the left
side of the page. On the Variables tab, it displays information about the MATLAB source
variables. On the Target Build Log tab, it displays the build log, including compiler warnings
and errors. By default, in the code window, the app displays the CUDA source file
mandelbrot_count.cu. To view a different file, in the Source Code or Output Files pane,
click the file name.

 Code Generation by Using the GPU Coder App

2-11

4 To view the code generation report, click View Report. The report provides links to your
MATLAB code and the generated CUDA (*.cu) files. It also provides compile-time information for
the variables and expressions in your MATLAB code. This information helps you to find sources of
error and warnings. It also helps you to debug code generation issues in your code. For more
information, see “Code Generation Reports”.

The GPU Kernels section on the Generated Code tab provides a list of kernels created during
GPU code generation. The items in this list link to the relevant source code. For example, when
you click mandelbrot_count_kernel1, the code section for this kernel is shown in the code
browser window.

After you review the report, you can close the Code Generation Report window. To view the
report later, open report.mldatx in <pwd>\codegen\mex\mandelbrot_cout\html folder.

5 The <pwd>\codegen\mex\mandelbrot_count contains the gpu_codegen_info.mat MAT-file
that contains the statistics for the generated GPU code. This MAT-file contains the cuda_Kernel
variable that has information about the thread and block sizes, shared and constant memory
usage, and input and output arguments of each kernel. The cudaMalloc and cudaMemcpy
variables contain information about the size of all the GPU variables and the number of memcpy
calls between the host and the device.

2 Tutorials

2-12

6 In the GPU Coder app, click Next to open the Finish Workflow page.

Review the Finish Workflow Page

The Finish Workflow page indicates that the code generation succeeded. It provides a project
summary and links to the MATLAB source files, the code generation report, and the generated output
binaries. You can save the configuration parameters of the current GPU Coder project as a MATLAB
script. See “Convert MATLAB Coder Project to MATLAB Script”.

 Code Generation by Using the GPU Coder App

2-13

Verify Correctness of the Generated Code

To verify the correctness of the generated MEX file, see “Verify Correctness of the Generated Code”
on page 3-2.

See Also
Apps
GPU Coder

Functions
codegen | coder.gpuConfig | coder.gpu.kernelfun | gpucoder

Objects
coder.gpuConfig | coder.CodeConfig | coder.EmbeddedCodeConfig

More About
• “GPU Programming Paradigm” on page 4-2
• “Installing Prerequisite Products” on page 1-3
• “Setting Up the Prerequisite Products” on page 1-7
• “GPU Code Generation Workflow” on page 4-3
• “The GPU Environment Check and Setup App” on page 1-12

2 Tutorials

2-14

Code Generation Using the Command Line Interface
The easiest way to create CUDA kernels is to place the coder.gpu.kernelfun pragma into your
primary MATLAB function. The primary function is also known as the top-level or entry-point
function. When the GPU Coder encounters kernelfun pragma, it attempts to parallelize all the
computation within this function and then maps it to the GPU.

Learning Objectives
In this tutorial, you learn how to:

• Prepare your MATLAB code for CUDA code generation by using the kernelfun pragma.
• Create and set up a GPU Coder project.
• Define function input properties.
• Check for code generation readiness and run-time issues.
• Specify code generation properties.
• Generate CUDA code by using the codegen command.

Tutorial Prerequisites
This tutorial requires the following products:

• MATLAB
• MATLAB Coder
• GPU Coder
• C compiler
• NVIDIA GPU enabled for CUDA
• CUDA Toolkit and driver
• Environment variables for the compilers and libraries. For more information, see “Environment

Variables” on page 1-7

Example: The Mandelbrot Set
Description

The Mandelbrot set is the region in the complex plane consisting of the values z0 for which the
trajectories defined by this equation remain bounded at k→∞.

zk + 1 = zk
2 + z0, k = 0, 1, …

The overall geometry of the Mandelbrot set is shown in the figure. This view does not have the
resolution to show the richly detailed structure of the fringe just outside the boundary of the set. At
increasing magnifications, the Mandelbrot set exhibits an elaborate boundary that reveals
progressively finer recursive detail.

 Code Generation Using the Command Line Interface

2-15

Algorithm

For this tutorial, pick a set of limits that specify a highly zoomed part of the Mandelbrot set in the
valley between the main cardioid and the p/q bulb to its left. A 1000-by-1000 grid of real parts (x) and
imaginary parts (y) is created between these two limits. The Mandelbrot algorithm is then iterated at
each grid location. An iteration number of 500 renders the image in full resolution.

maxIterations = 500;
gridSize = 1000;
xlim = [-0.748766713922161,-0.748766707771757];
ylim = [0.123640844894862,0.123640851045266];

This tutorial uses an implementation of the Mandelbrot set by using standard MATLAB commands
running on the CPU. This calculation is vectorized such that every location is updated simultaneously.

Tutorial Files
Create a MATLAB script called mandelbrot_count.m with the following lines of code. This code is a
baseline vectorized MATLAB implementation of the Mandelbrot set. Later in this tutorial, you modify
this file to make it suitable for code generation.

function count = mandelbrot_count(maxIterations, xGrid, yGrid)
% mandelbrot computation

z0 = xGrid + 1i*yGrid;
count = ones(size(z0));

z = z0;
for n = 0:maxIterations
 z = z.*z + z0;
 inside = abs(z)<=2;
 count = count + inside;
end
count = log(count);

Create a MATLAB script called mandelbrot_test.m with the following lines of code. The script
generates 1000-by-1000 grid of real parts (x) and imaginary parts (y) between the limits specified by
xlim and ylim. It also calls the mandelbrot_count function and plots the resulting Mandelbrot set.

maxIterations = 500;
gridSize = 1000;

2 Tutorials

2-16

xlim = [-0.748766713922161, -0.748766707771757];
ylim = [0.123640844894862, 0.123640851045266];

x = linspace(xlim(1), xlim(2), gridSize);
y = linspace(ylim(1), ylim(2), gridSize);
[xGrid,yGrid] = meshgrid(x, y);

%% Mandelbrot computation in MATLAB
count = mandelbrot_count(maxIterations, xGrid, yGrid);

% Show
figure(1)
imagesc(x, y, count);
colormap([jet();flipud(jet());0 0 0]);
axis off
title('Mandelbrot set with MATLAB');

Run the Original MATLAB Code
Run the Mandelbrot Example

Before making the MATLAB version of the Mandelbrot set algorithm suitable for code generation, you
can test the functionality of the original code.

1 Change the current working folder of MATLAB to the location that contains the two files you
created in the previous step. GPU Coder places generated code in this folder, change your
current working folder if you do not have full access to this folder.

2 Open the mandelbrot_test script in the MATLAB Editor.
3

Run the test script by clicking the run button or by entering mandelbrot_test in the
MATLAB Command Window.

The test script runs and shows the geometry of the Mandelbrot within the boundary set by the
variables xlim and ylim.

 Code Generation Using the Command Line Interface

2-17

Make the MATLAB Code Suitable for Code Generation
To begin the process of making your MATLAB code suitable for code generation, use the file
mandelbrot_count.m.

1 Set your MATLAB current folder to the work folder that contains your files for this tutorial.
2 In the MATLAB Editor, open mandelbrot_count.m. The file opens in the MATLAB Editor. The

Code Analyzer message indicator in the top right corner of the MATLAB Editor is green. The
analyzer did not detect errors, warnings, or opportunities for improvement in the code.

3 Turn on MATLAB for code generation error checking. After the function declaration, add the
%#codegen directive.
function count = mandelbrot_count(maxIterations, xGrid, yGrid) %#codegen

The Code Analyzer message indicator remains green, indicating that it has not detected code
generation issues.

4 To map the mandelbrot_count function to a CUDA kernel, modify the original MATLAB code by
placing the coder.gpu.kernelfun pragma outside the for-loop body.
function count = mandelbrot_count(maxIterations, xGrid, yGrid) %#codegen
% mandelbrot computation

z0 = xGrid + 1i*yGrid;
count = ones(size(z0));

% Add Kernelfun pragma to trigger kernel creation
coder.gpu.kernelfun;

2 Tutorials

2-18

z = z0;
for n = 0:maxIterations
 z = z.*z + z0;
 inside = abs(z)<=2;
 count = count + inside;
end
count = log(count);

When using the coder.gpu.kernelfun pragma, GPU Coder attempts to map the computations
in the function mandelbrot_count to the GPU.

5 Save the file. You are now ready to compile your code by using the command-line interface.

Code Generation from the Command Line
You can use the codegen command to translate MATLAB functions to a CUDA compatible static or
dynamic library, executable, or MEX function, instead of using the GPU Coder app.

Define Input Types

At compile time, GPU Coder must know the data types of all the inputs to the entry-point function.
Therefore, if your entry-point function has inputs, you must specify its data type at the time that you
compile the file with the codegen function.

You can generate inputs and then use the -args option in the codegen function to let GPU Coder
determine the class, size, and complexity of the input parameters. To generate inputs for
mandelbrot_count function, use these commands:

maxIterations = 500;
gridSize = 1000;
xlim = [-0.748766713922161, -0.748766707771757];
ylim = [0.123640844894862, 0.123640851045266];

x = linspace(xlim(1), xlim(2), gridSize);
y = linspace(ylim(1), ylim(2), gridSize);
[xGrid,yGrid] = meshgrid(x, y);

Alternatively, you can specify the size, type and complexity of the inputs to the entry-point functions
without generating input data by using the coder.typeof function.

ARGS = cell(1,1);
ARGS{1} = cell(3,1);
ARGS{1}{1} = coder.typeof(0);
ARGS{1}{2} = coder.typeof(0,[1000 1000]);
ARGS{1}{3} = coder.typeof(0,[1000 1000]);

Build Configuration

To configure build settings such as output file name, location, type, you have to create coder
configuration objects. To create the objects, use the coder.gpuConfig function. For example, to
create a coder.MexCodeConfig code generation object for use with codegen when generating a
MEX function, use:

cfg = coder.gpuConfig('mex');

Other available options are:

• cfg = coder.gpuConfig('lib');, to create a code generation configuration object for use
with codegen when generating a CUDA static library.

 Code Generation Using the Command Line Interface

2-19

• cfg = coder.gpuConfig('dll');, to create a code generation configuration object for use
with codegen when generating a CUDA dynamic library.

• cfg = coder.gpuConfig('exe');, to create a code generation configuration object for use
with codegen when generating a CUDA executable.

For more information, see coder.gpuConfig.

Each configuration object comes with a set of parameters, initialized to default values. You can use
dot notation to modify the value of one configuration object parameter at a time. Use this syntax:

configuration_object.property = value

You can enable the same settings as in the “Code Generation by Using the GPU Coder App” on page
2-2 by using the following command-line equivalents:

cfg = coder.gpuConfig('mex');
cfg.GpuConfig.CompilerFlags = '--fmad=false';
cfg.GenerateReport = true;

The cfg configuration object has configuration parameters that are common to MATLAB Coder and
GPU Coder and parameters that are GPU Coder-specific. You can see all the GPU-specific properties
available in the cfg configuration object by typing cfg.GpuConfig in the MATLAB Command
Window.

>> cfg.GpuConfig

ans =

 config with properties:

 Enabled: 1
 MallocMode: 'discrete'
 KernelNamePrefix: ''
 EnableCUBLAS: 1
 EnableCUSOLVER: 1
 EnableCUFFT: 1
 Benchmarking: 0
 SafeBuild: 0
 ComputeCapability: '3.5'
 CustomComputeCapability: ''
 CompilerFlags: ''
 StackLimitPerThread: 1024
 MallocThreshold: 200
 SelectCudaDevice: -1

The --fmad=false flag when passed to the nvcc, instructs the compiler to disable Floating-Point
Multiply-Add (FMAD) optimization. This option is set to prevent numerical mismatch in the generated
code because of architectural differences in the CPU and the GPU. For more information, see
“Numerical Differences Between CPU and GPU” on page 3-4.

For more information on configuration parameters that are common to MATLAB Coder and GPU
Coder, see coder.CodeConfig class.

Build Script

You can create a build script mandelbrot_codegen.m that automates the series of commands
mentioned previously.

2 Tutorials

2-20

% GPU code generation for getting started example (mandelbrot_count.m)
%% Create configuration object of class 'coder.MexCodeConfig'.
cfg = coder.gpuConfig('mex');
cfg.GenerateReport = true;
cfg.GpuConfig.CompilerFlags = '--fmad=false';

%% Define argument types for entry-point 'mandelbrot_count'.
ARGS = cell(1,1);
ARGS{1} = cell(3,1);
ARGS{1}{1} = coder.typeof(0);
ARGS{1}{2} = coder.typeof(0,[1000 1000]);
ARGS{1}{3} = coder.typeof(0,[1000 1000]);

%% Invoke GPU Coder.
codegen -config cfg mandelbrot_count -args ARGS{1}

The codegen command opens the file mandelbrot_count.m and translates the MATLAB code into
CUDA code.

• The -report option instructs codegen to generate a code generation report that you can use to
debug your MATLAB code.

• The -args option instructs codegen to compile the file mandelbrot_count.m by using the
class, size, and complexity of the input parameters maxIterations, xGrid, and yGrid.

• The -config option instructs codegen to use the specified configuration object for code
generation.

When code generation is successful, you can view the resulting code generation report by clicking
View Report in the MATLAB Command Window.

>> mandelbrot_codegen
Code generation successful: View report

 Code Generation Using the Command Line Interface

2-21

Verify Correctness of the Generated Code
To verify correctness of the generated MEX file, see “Verify Correctness of the Generated Code” on
page 3-2.

See Also
Apps
GPU Coder

Functions
codegen | coder.gpuConfig | coder.gpu.kernelfun | gpucoder

Objects
coder.gpuConfig | coder.CodeConfig | coder.EmbeddedCodeConfig

More About
• “GPU Programming Paradigm” on page 4-2
• “Installing Prerequisite Products” on page 1-3
• “Setting Up the Prerequisite Products” on page 1-7
• “GPU Code Generation Workflow” on page 4-3
• “The GPU Environment Check and Setup App” on page 1-12

2 Tutorials

2-22

GPU Code Generation: The Mandelbrot Set

This example shows how to generate CUDA® code from a simple MATLAB® function by using GPU
Coder™. A Mandelbrot set implementation by using standard MATLAB commands acts as the entry-
point function. This example uses the codegen command to generate a MEX function that runs on
the GPU. You can run the MEX function to check for run-time errors.

Third-Party Prerequisites

Required

This example generates CUDA MEX and has the following third-party requirements.

• CUDA enabled NVIDIA® GPU and compatible driver.

Optional

For non-MEX builds such as static, dynamic libraries or executables, this example has the following
additional requirements.

• NVIDIA toolkit.
• Environment variables for the compilers and libraries. For more information, see “Third-Party

Hardware” on page 1-3 and “Setting Up the Prerequisite Products” on page 1-7.

Verify GPU Environment

To verify that the compilers and libraries necessary for running this example are set up correctly, use
the coder.checkGpuInstall function.

envCfg = coder.gpuEnvConfig('host');
envCfg.BasicCodegen = 1;
envCfg.Quiet = 1;
coder.checkGpuInstall(envCfg);

Mandelbrot Set

The Mandelbrot set is the region in the complex plane consisting of the values for which the
trajectories defined by

remain bounded at . The overall geometry of the Mandelbrot set is shown in the figure. This
view does not have the resolution to show the richly detailed structure of the fringe just outside the
boundary of the set.

 GPU Code Generation: The Mandelbrot Set

2-23

Define Input Regions

Pick a set of limits that specify a highly zoomed part of the Mandelbrot set in the valley between the
main cardioid and the bulb to its left. A 1000x1000 grid of and is created between
these two limits. The Mandelbrot algorithm is then iterated at each grid location. An iteration number
of 500 is enough to render the image in full resolution.

maxIterations = 500;
gridSize = 1000;
xlim = [-0.748766713922161, -0.748766707771757];
ylim = [0.123640844894862, 0.123640851045266];

x = linspace(xlim(1), xlim(2), gridSize);
y = linspace(ylim(1), ylim(2), gridSize);
[xGrid,yGrid] = meshgrid(x, y);

The Mandelbrot Entry-Point Function

The mandelbrot_count.m entry-point function contains a vectorized implementation of the
Mandelbrot set based on the code provided in the e-book Experiments with MATLAB by Cleve Moler.
The %#codegen directive turns on MATLAB for code generation error checking. When GPU Coder
encounters the coder.gpu.kernelfun pragma, it attempts to parallelize all the computation within
this function, and then maps it to the GPU.

type mandelbrot_count

2 Tutorials

2-24

https://www.mathworks.com/moler/exm.html

function count = mandelbrot_count(maxIterations, xGrid, yGrid) %#codegen

% Copyright 2016-2019 The MathWorks, Inc.

z0 = xGrid + 1i*yGrid;
count = ones(size(z0));

% Map computation to GPU.
coder.gpu.kernelfun;

z = z0;
for n = 0:maxIterations
 z = z.*z + z0;
 inside = abs(z)<=2;
 count = count + inside;
end
count = log(count);

Test the Functionality of mandelbrot_count

Run the mandelbrot_count function with the xGrid, yGrid values that were previously generated,
and then plot the results.

count = mandelbrot_count(maxIterations, xGrid, yGrid);

figure(2), imagesc(x, y, count);
colormap([jet();flipud(jet());0 0 0]);
title('Mandelbrot Set on MATLAB');
axis off

 GPU Code Generation: The Mandelbrot Set

2-25

Generate CUDA MEX for the Function

To generate CUDA MEX for the mandelbrot_count function, create a GPU code configuration
object and run the codegen command. Because of architectural differences between the CPU and
GPU, numeric verification does not always match. This scenario is true when using the single data
type in your MATLAB code and performing accumulation operations on these single data type values.
Like this Mandelbrot example even the double data types cause numeric errors. One reason for this
mismatch is that the GPU floating-point units use fused Floating-point Multiply-Add (FMAD)
instructions and the CPU does not use these instructions. The fmad=false option that is passed to
the nvcc compiler turns off this FMAD optimization.

cfg = coder.gpuConfig('mex');
cfg.GpuConfig.CompilerFlags = '--fmad=false';
codegen -config cfg -args {maxIterations,xGrid,yGrid} mandelbrot_count

Code generation successful: To view the report, open('codegen/mex/mandelbrot_count/html/report.mldatx').

Run the MEX Function

After generating a MEX function, verify that it has the same functionality as the original MATLAB
entry-point function. Run the generated mandelbrot_count_mex and plot the results.

countGPU = mandelbrot_count_mex(maxIterations, xGrid, yGrid);

figure(2), imagesc(x, y, countGPU);
colormap([jet();flipud(jet());0 0 0]);

2 Tutorials

2-26

title('Mandelbrot Set on GPU');
axis off

See Also
Apps
GPU Coder

Functions
codegen | coder.gpuConfig | coder.gpu.kernelfun | gpucoder

Objects
coder.gpuConfig | coder.CodeConfig | coder.EmbeddedCodeConfig

More About
• “GPU Programming Paradigm” on page 4-2
• “Installing Prerequisite Products” on page 1-3
• “Setting Up the Prerequisite Products” on page 1-7
• “GPU Code Generation Workflow” on page 4-3
• “The GPU Environment Check and Setup App” on page 1-12

 GPU Code Generation: The Mandelbrot Set

2-27

Debug CUDA MEX Functions
You can debug your generated CUDA MEX function using MATLAB or a CUDA debugger. To debug
your CUDA MEX functions in MATLAB, use the disp function to inspect the contents of your MEX
function variables. You cannot use save to debug MEX function variables because code generation
does not support it. Code generation does not support declaration of save as extrinsic. You can also
use the fprintf function to inspect the contents of your MEX function variables.

Debug CUDA MEX Functions by Using a Debugger
This example shows how to debug CUDA MEX functions using a debugger.

1 Consider an entry-point function foo that squares each element of a matrix x and scales the
result by a factor of 1/(i+j), where i,j are the row and column indexes.

function [y] = foo(x) %#codegen

y = coder.nullcopy(zeros(size(x)));
coder.gpu.kernelfun();
for i = 1:size(x,1)
 for j = 1:size(x,2)
 y(i,j)=(x(i,j)^2)/(i+j);
 end
end
end

2 To build a CUDA MEX function with debugging symbols included, set the MEX configuration
object property EnableDebugging to 1.

cfg = coder.gpuConfig('mex');
cfg.EnableDebugging = 1;
input = rand(32);

codegen -config cfg -args {input} foo

Alternatively, you can debug your MEX function by executing this command:

codegen -g -args {input} foo

You can debug the generated CUDA MEX (foo_mex) by using the Visual Studio CUDA debugger on
Windows or the CUDA GNU® debugger cuda-gdb on Linux systems.

Debug on Microsoft Windows Platforms
This example shows the general steps to debug foo_mex by using the NVIDIA Nsight Visual Studio
Edition CUDA Debugger. For specific information about using Nsight VSE, refer to NVIDIA
documentation.

1 After generating the CUDA MEX function, start Visual Studio. Do not exit your MATLAB session.
2 Attach the debugger to the running MATLAB process by selecting Debug > Attach to Process

or press Ctrl + Alt + p in Visual Studio. For more information, refer to your Visual Studio
documentation.

3 Set breakpoints in code. Select Debug > New Breakpoint in Visual Studio. For more
information, refer to your Visual Studio documentation.

2 Tutorials

2-28

4 Open MATLAB and type:

out = foo_mex(input);

foo.cu is opened in the Visual Studio CUDA debugger at the first breakpoint.
5 If you select Debug > Continue, code execution completes and the results can be verified in

MATLAB.

Debug on Linux Platforms
The CUDA GNU Debugger cuda-gdb, available for Linux systems as part of the CUDA Toolkit
installation, provides complete source code debugging, including the ability to set breakpoints,
examine variables, and step through the source code line-by-line.

In this procedure, the MATLAB command prompt >> is shown in front of MATLAB commands, and
linux> represents a Linux prompt; your system might show a different prompt. The debugger
prompt is <cuda-gdb>.

1 To debug with cuda-gdb, at the Linux prompt, start the cuda-gdb debugger using the matlab
function -D option.

linux> matlab -Dcuda-gdb
2 Tell cuda-gdb to stop for debugging.

<cuda-gdb> handle SIGSEGV SIGBUS nostop noprint
<cuda-gdb> handle SIGUSR1 stop print

3 Start MATLAB without the Java® Virtual Machine (JVM™) by using the -nojvm startup flag.

<cuda-gdb> run -nojvm
4 In MATLAB, enable debugging with the dbmex function and run your binary MEX file.

>> dbmex on
>> out = foo_mex(rand(32));

5 You are ready to start debugging.

It is often convenient to set a breakpoint at mexFunction so you stop at the beginning of the
gateway routine.

<cuda-gdb> break mexFunction
<cuda-gdb> r

6 Once you hit one of your breakpoints, you can make full use of any commands the debugger
provides to examine variables, display memory, or inspect registers.

To proceed from a breakpoint, type:

<cuda-gdb> continue
7 After stopping at the last breakpoint, type:

<cuda-gdb> continue

Code execution finishes and the results can be verified on MATLAB.
8 From the MATLAB prompt you can return control to the debugger by typing:

>> dbmex stop

 Debug CUDA MEX Functions

2-29

Or, if you are finished running MATLAB, type:

>> quit

When you are finished with the debugger, type:

<cuda-gdb> quit

You return to the Linux prompt.

For more information on CUDA debugger, refer to NVIDIA documentation.

See Also
dbmex | codegen | coder.gpuConfig | coder.gpu.kernelfun | gpucoder

More About
• “GPU Programming Paradigm” on page 4-2
• “Installing Prerequisite Products” on page 1-3
• “Setting Up the Prerequisite Products” on page 1-7
• “GPU Code Generation Workflow” on page 4-3
• “Code Generation Using the Command Line Interface” on page 2-15

2 Tutorials

2-30

Verification

3

Verify Correctness of the Generated Code
After you generate code, GPU Coder provides you multiple options to inspect the source code and test
the correctness of the generated code.

• The code generation report provides an interactive interface for inspecting the generated CUDA
source files, generated data types, and other code insights. For more information, see “Code
Generation Reports”.

• Verify generated MEX functions in the GPU Coder app.
• Verify generated MEX functions at the command line.
• With the MATLAB Coder Support Package for NVIDIA Jetson and NVIDIA DRIVE Platforms, you

can use the processor-in-the-loop (PIL) execution to check the numerical behavior of the CUDA
code that you generate from MATLAB functions. For more information, see “Processor-In-The-
Loop Execution from Command Line” (MATLAB Coder Support Package for NVIDIA Jetson and
NVIDIA DRIVE Platforms) and “Processor-In-The-Loop Execution with the GPU Coder App”
(MATLAB Coder Support Package for NVIDIA Jetson and NVIDIA DRIVE Platforms).

• If you have Embedded Coder, you can verify the numerical behavior of the generated CUDA code
by using software-in-the-loop (SIL) execution.

Note GPU Coder does not support collecting code coverage metrics during software-in-the-loop (SIL)
and processor-in-the-loop (PIL) simulations.

Verify MEX Functions in the GPU Coder App
In the GPU Coder app, after you generate a MEX function, you can verify that it has the same
functionality as the original MATLAB entry-point function. Provide a test file that generates test
vectors for the function under test and then calls the original MATLAB entry-point function. The test
file can be a MATLAB function or script but must be in the same folder as the original entry-point
function.

• On the Generate Code page of the GPU Coder app, click Verify Code.
• Type or select the test file. For example, myfunction_test.
• To run the test file without replacing calls to the original MATLAB function with calls to the MEX

function, select MATLAB code for the Run using option. Click Run Generated Code.
• To run the test file, replacing calls to the original MATLAB function with calls to the MEX function,

select Generated code for the Run using option. Click Run Generated Code.
• Compare the results of running the original MATLAB function with the results of running the

generated CUDA MEX function.

Verify MEX Functions at the Command Line
You can verify the generated CUDA MEX file at the command line by using the coder.runTest
function. The coder.runTest function runs the test file by replacing calls to the original MATLAB
function with calls to the MEX function. For example, to test myfunction function with
myfunction_test test file, enter the following code in the MATLAB Command Window.

coder.runTest('myfunction_test','myfunction')

3 Verification

3-2

Compare the results with the results of running the original MATLAB function. If errors occur during
the run, call stack information is available for debugging. Alternatively, you can use codegen with the
-test option.

codegen myfunction -test'myfunction_test'

The test file can be a MATLAB function, script, or class-based unit test.

Code Verification Through Software-In-The-Loop
GPU Coder supports software-in-the-loop (SIL) execution, which enables you to verify source code
and compiled object code. During SIL execution through a MATLAB SIL interface, the software
compiles and using the test vectors that you provide, runs library code on your development
computer. You can reuse test vectors developed for your MATLAB functions to verify the numerical
behavior of library code.

Note

• On a Microsoft Windows system, the Windows Firewall can potentially block a SIL execution.
Change the Windows Firewall settings to allow access.

• When using SIL execution, make sure that the Benchmarking option in GPU Coder settings is
false. Executing SIL with benchmarking results in compilation errors.

SIL Execution with the GPU Coder App

The software-in-the-loop (SIL) execution is supported only for static and dynamic library output types.
If you generated a MEX function, you must change the project settings to use Static Library or
Dynamic Library for Build type and run Generate code again.

1 To open the GPU Coder app, on the MATLAB toolstrip Apps tab, under Code Generation, click
the app icon.

2
To open your project, click , and then click Open existing project. Select the project,
myproject.prj. On the Generate Code page, click the Generate arrow .

3 In the Generate dialog box:

• Set Build type to Static Library or Dynamic Library.
• Clear the Generate code only check box.
• You can leave the other settings to their default values.

4 To generate the CUDA code, click Generate. Click Verify Code.
5 In the command field, specify the test file (for example, myfunction_test.m) that calls the

original MATLAB functions (for example, myfunction).
6 To start the SIL execution, click Run Generated Code. The GPU Coder app:

• Generates a standalone library in codegen\lib\myfunction.
• Generates SIL interface code in codegen\lib\myfunction\sil.
• Runs the test file, replacing calls to the MATLAB function with calls to the generated code in

the library.

 Verify Correctness of the Generated Code

3-3

• Displays messages from the SIL execution in the Test Output tab.
7 Verify that the results from the SIL execution match the results from the original MATLAB

functions.
8 To terminate the SIL execution process, click Stop SIL Verification. Alternatively, on the Test

Output tab, click the link that follows To terminate execution.

SIL Execution from Command Line

To set up and start a SIL execution from the command line, you create a GPU Coder configuration
object for library code generation, enable config_obj.VerificationMode = 'SIL', use
codegen function to generate the library code and the SIL interface, and use coder.runTest
function to run the test file for your original MATLAB function. The following is a build script that
automates the series of commands to perform SIL execution.

%% Create configuration object for static library.
config = coder.gpuConfig('lib');
config.GenerateReport = true;
config.VerificationMode = 'SIL';

%% Define argument types for entry-point 'mandelbrot_count'.
ARGS = cell(1,1);
ARGS{1} = cell(3,1);
ARGS{1}{1} = coder.typeof(0);
ARGS{1}{2} = coder.typeof(0,[1000 1000]);
ARGS{1}{3} = coder.typeof(0,[1000 1000]);

%% Invoke GPU Coder.
codegen -config config myfunction -args ARGS{1}

%% Run the test file with the sil interface
coder.runTest('myfunction_test', ['myfunction_sil.' mexext]);

%% Terminate SIL execution
clear myfunction_sil;

Numerical Differences Between CPU and GPU
Because of architectural differences between the CPU and GPU, numerical verification does not
always match. This scenario is specially true when using single data type in your MATLAB code and
performing accumulation operations on these single data type values. However, there are cases like
the Mandelbrot example where even double data types cause numerical errors. One reason for this
mismatch is that the GPU floating-point units use fused Floating-Point Multiply-Add (FMAD)
instructions while the CPU does not use these instructions. It is also important to note that the CUDA
compiler performs these instruction-level optimizations by default impacting the accuracy of the
computed results. For example, the CUDA compiler fuses floating-point multiply and add instructions
into a single instruction. This Floating-point Multiply-Add (FMAD) operation executes twice as fast
compared to two single instructions but results in the loss of numerical accuracy. You can achieve
tighter control over these optimizations by using intrinsic functions and compiler flags. To set
compiler flags, see coder.gpuConfig. To integrate CUDA intrinsics, see “Call Custom CUDA Device
Function from the Generated Code”.

3 Verification

3-4

See Also
Apps
GPU Coder

Functions
codegen | coder.gpuConfig | coder.gpu.kernelfun | gpucoder | coder.runTest

Objects
coder.gpuConfig | coder.CodeConfig | coder.EmbeddedCodeConfig

More About
• “Code Generation Reports”
• “Processor-In-The-Loop Execution from Command Line” (MATLAB Coder Support Package for

NVIDIA Jetson and NVIDIA DRIVE Platforms)
• “Processor-In-The-Loop Execution with the GPU Coder App” (MATLAB Coder Support Package

for NVIDIA Jetson and NVIDIA DRIVE Platforms)

 Verify Correctness of the Generated Code

3-5

About GPU Code Generation

• “GPU Programming Paradigm” on page 4-2
• “GPU Code Generation Workflow” on page 4-3

4

GPU Programming Paradigm
GPU-accelerated computing follows a heterogeneous programming model. Highly parallelizable
portions of the software application are mapped into kernels that execute on the physically separate
GPU device, while the remainder of the sequential code still runs on the CPU. Each kernel is allocated
several workers or threads, which are organized in blocks and grids. Every thread within the kernel
executes concurrently with respect to each other.

The objective of GPU Coder is to take a sequential MATLAB program and generate partitioned,
optimized CUDA code from it. This process involves:

• CPU/GPU partitioning — Identifying segments of code that run on the CPU and segments that run
on the GPU. For the different ways GPU Coder identifies CUDA kernels, see “Kernel Creation”.
Memory transfer costs between CPU and GPU are a significant consideration in the kernel
creation algorithm.

• After kernel partitioning is complete, GPU Coder analyzes the data dependency between the CPU
and GPU partitions. Data that is shared between the CPU and GPU are allocated on GPU memory
(by using cudaMalloc or cudaMallocManaged APIs). The analysis also determines the minimum
set of locations where data has to be copied between CPU and GPU by using cudaMemcpy. If
using Unified Memory in CUDA, then the same analysis pass also determines the minimum
locations in the code where cudaDeviceSync calls must be inserted to get the right functional
behavior.

• Next, within each kernel, GPU Coder can choose to map data to shared memory or constant
memory. If used wisely, these memories are part of the GPU memory hierarchy structure and can
potentially result in greater memory bandwidth. For information on how GPU Coder chooses to
map to shared memory, see “Stencil Processing”. For information on how GPU Coder chooses to
map to constant memory, see coder.gpu.constantMemory.

• Once partitioning and memory allocation and transfer statements are in place, GPU Coder
generates CUDA code that follows the partitioning and memory allocation decisions. The
generated source code can be compiled into a MEX target to be called from within MATLAB or
into a shared library to be integrated with an external project. For information, see “Code
Generation Using the Command Line Interface” on page 2-15.

See Also

More About
• “GPU Code Generation Workflow” on page 4-3
• “Code Generation by Using the GPU Coder App” on page 2-2
• “Code Generation Using the Command Line Interface” on page 2-15
• “Kernel Creation from MATLAB Code”
• “Kernel Creation from Simulink Models”

4 About GPU Code Generation

4-2

GPU Code Generation Workflow
GPU Coder code generation technology produces CUDA C++ code and executable programs for
algorithms. You can write algorithms programmatically by using MATLAB or graphically in the
Simulink environment. You can generate code for MATLAB functions and Simulink MATLAB Function
blocks that are useful for real-time and embedded applications. Because code generation is tightly
integrated with the MATLAB and Simulink execution and simulation engines, the generated source
code and executable programs match the functional behavior of MATLAB code executions and
Simulink simulations to a high degree of accuracy.

The code generator supports two workflows for designing, implementing, and verifying generated
CUDA code. This figure shows the design and deployment environment options.

See Also

More About
• “GPU Programming Paradigm” on page 4-2
• “Code Generation by Using the GPU Coder App” on page 2-2
• “Code Generation Using the Command Line Interface” on page 2-15
• “Kernel Creation from MATLAB Code”
• “Kernel Creation from Simulink Models”

 GPU Code Generation Workflow

4-3

	About GPU Coder
	GPU Coder Product Description
	Installing Prerequisite Products
	MathWorks Products and Support Packages
	Third-Party Hardware
	Third-Party Software
	Tips

	Setting Up the Prerequisite Products
	MEX Setup
	Environment Variables
	Verify Setup

	The GPU Environment Check and Setup App
	Hardware Setup
	Board Settings
	Workflow Checks
	Environment Checks
	GPU Code Generation Environment Check Report

	Tutorials
	Code Generation by Using the GPU Coder App
	Learning Objectives
	Tutorial Prerequisites
	Example: The Mandelbrot Set
	Tutorial Files
	Run the Original MATLAB Code
	Prepare MATLAB Code for Code Generation
	Make the MATLAB Code Suitable for Code Generation
	Generate Code by Using the GPU Coder App

	Code Generation Using the Command Line Interface
	Learning Objectives
	Tutorial Prerequisites
	Example: The Mandelbrot Set
	Tutorial Files
	Run the Original MATLAB Code
	Make the MATLAB Code Suitable for Code Generation
	Code Generation from the Command Line
	Verify Correctness of the Generated Code

	GPU Code Generation: The Mandelbrot Set
	Debug CUDA MEX Functions
	Debug CUDA MEX Functions by Using a Debugger
	Debug on Microsoft Windows Platforms
	Debug on Linux Platforms

	Verification
	Verify Correctness of the Generated Code
	Verify MEX Functions in the GPU Coder App
	Verify MEX Functions at the Command Line
	Code Verification Through Software-In-The-Loop
	Numerical Differences Between CPU and GPU

	About GPU Code Generation
	GPU Programming Paradigm
	GPU Code Generation Workflow

